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THE CAMBER DISTRIBUTION OF A SPANWISE UNIFORMLY
LOADED SUBSONIC WING*

Toshio Kawasaki**, Masao Ebihara**

ABSTRACT, 1In this report the author discusses the shape
of three-dimensional wings in subsonic flow, with a load
distribution uniform in spanwise- and arbitrary in chordwise-
direction. A certain restriction has to be placed on the
planform of the wing: the wing, swept-back or not, should
have straight leading- and trailing-edges.

Formulas derived from linearized theory are given, with
which one can obtain the camber shape from predetermined load
distribution.

In addition, an expression for calculating the Mach
number distribution normal to the isobars on the wing surface
is presented.

Some numerical examples show that the advent of the
critical stage on the wing surface will be delayed up to a
considerably high free-stream Mach number by designing the
camber shape for the wing in such a manner that it possesses
spanwise uniform loading with a chordwise shape suitable for
the distribution.

1. Introduction

The reason for the fact that many airplanes having high subsonic or super-

[ Lkkk

sonic cruising speeds have swept-back wings is that it can increase the critical
Mach number on the wing surface. In other words, it can suppress the generation

of shock waves up to higher Mach numbers.

According to Bickley (Ref. 1), shock waves will be generated when the

velocity component normal to the isobars exceeds local sonic speed in the flow-

field at a certain point on the wing. Therefore, this velocity component should

be reduced in order to delay the generation of shock waves. For this purpose,

the angle between the direction of velocity and the isobar line is to be re-
duced, taking advantage of the swept-back angle.

In the case of a swept-wing having an infinite span, all isobar lines on
the wing have the same angle with the main stream as the front edge makes with
it. Hence, the critical Mach number increases proportionally with the sine of

this angle, when compared with the corresponding two-dimensional wing.

However, in the case of a three-dimensional wing having a finite span, a
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swept-back angle does not simply result in the inclination of isobars. Especial-
ly at the base and tip of the wing, the isobars tend to become normal to the
main stream, thus loosing the effect of the sweep-back angle almost entirely
(Ref. 2).

In order to prevent this, it is possible to modify the outline for the
cross section of the wing so as to make the isobars at the tip and base of the
wing approach those of the infinite-span swept-wing.

Based on this idea, Kuchemann (Ref. 3) and Weber (Ref. 4) considered the
thickness and camber distribution of a wing cross section for a semi-infinite
span, swept-back wing.

In this report, we computed the camber distribution for a finite-span
wing with a uniform span-wise load distribution. The considered outline of the
wing possesses straight-line leading and trailing edges with a possible taper.

When the span-wise load distribution is uniform, the isobars become straight
lines passing through the intersection of the extensions of the leading and
trailing edges, so that the direction normal to the isobars makes a larger angle
with the main stream than the swept-back angle of the trailing edge. Thus, a

sufficient swept-back angle effect can be expected at the tip and base of the
wing.

In order to confirm this effect, it is necessary to obtain the flow field
on the wing having the computed camber distribution and to find the distribution
of Mach number component normal to the isobars in the direction of the wing

chord. For this purpose, we derived equations giving the Mach number component
normal to the isobar.

Symbols

a: Refer to Figure 2. It represents the local sonic speed in (Ref. 8);
a_ : Sonic speed of uniform stream;

Rk Aspect ratio;

b: Refer to Figure 2;
¢ ¢ Pressure coefficient;
c,..: lim c_ pressure coefficient above the upper surface;
PU P
z->0+
Cpr* lim ¢_ pressure coefficient below the lower surface;
z>0-~

Z(xl,yl): Load distribution. Refer to (2.4);

Zla: Refer to (4.1);

Z2b: Refer to (4.2);

M: Local Mach number;

Mach number of uniform stream; : /3

M
(=]

Mn: Mach number component normal to isobars;
r: r=v(z—z)+@—u)?+=*
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c:

Half wing-span (when the chord length at the wing base is made 1);
Velocity of uniform stream;
Velocity component normal to isobars;

Velocity disturbance in x-direction;
Velocity disturbance in y-direction;
Velocity disturbance in z-direction;

Coordinate in the direction of uniform stream;
Variable of integration in x-direction;

Equation of leading edge; refer to (3.1);

X = x~1-s tan ¥;
xra = X—-a-s tan y;
X4 = x~b-s tan Q;
Xxgl = x-El—s tan Agl;

Equation of trailing edge. Refer to (3.2);

Coordinate normal to uniform stream on the wing surface;
Variable of integration in y-direction;

Coordinate in the direction normal to the wing surface;
Camber distribution. Refer to (7.1);

Camber distribution. Refer to (7.3);
Thickness distribution;

local elevation angle. Refer to (7.2);

Ratio of the distance from the front edge to the local chord length.
Refer to (4.3);

Variable of integration of &;

Angle between isobar and y-axis;
Refer to Figure 1;

Refer to (5.3);

1 - (taper ratio);
P = s/A;
o = A/s;
Intensity of doublet placed at the point (xl, yl);

Disturbance potential;
Sweep-back angle of leading edge;
Sweep-back angle of trailing edge;
Refer to (6.6);
tan~! (tan p~0b) ;

Refer to (4.5).

Quantities in incompressible flow,



2. Fundamental Equations

According to the linear theory of incompressible gases, the disturbance po-
tential due to a wing having a camber, but no thickness, which is placed in a
stream at a small elevation angle, is given by the following equation

1 2.
¢(xr Y, z)———" jj T(.Z‘1, yl) 5z < )dxmly, ( 1)
Tt ‘
where
T(xl,yl): the intensity of a doublet located on the wing or in the
wake (%;,¥7);
S: wing surface;
W: wake.
r=vV(z—z)*+ Y-y ) +22 (2.2)
The intensity T of a doublet is related to the potential at the discontinuity
7(z1, Y1) =9(x1, Y1, —0) — (21, Y1, +0) (2.3)

Using the following equaitons representing the pressure difference above and
below the wing,

Iz, Yo) =cpr(xs, Y1) —cpulzn Y1)
cru: pressure coefficient above the wing (2.4)
p1: pressure coefficient below the wing
and the equation which is well known in the linear theory

(2.5)

cp= —-2-— ‘

we obtain the following equation by rewrltlng (1.2), noting the fact that no
pressure discontinuity exists in the wake (Ref. 4).

__Vz Iz, Y1) r—I
¢(z, Y, 2)= ESS(y y;)”+z2{ +~/(x—:q)’+(y ?/1)2+ }dx;dy; (2-6)

A downward flow v, from this wing is derived by differentiating ¢ with respect /5
to z, then the camber distribution z, is determined from the following equation

0z —E)L—l@_". i
0x  V V 6z 2.7

By means of (2.6) and (2.7), a camber distribution z, which possesses the given

load distribution 7Z(x,y) can be computed.

3. Outline of the Wing

The outline of the proposed wing consists of straight lines both at the
leading and trailing edges, as shown in Figure 1. Let the sweep-back angle
of the leading edge be ¢ and that of the trailing edge be ¥. Then the equa-
tions describing the leading edge line and the trailing edge line are, respec-
tively, given as follows:



leading edge line 2~y tan ¢=0 (3.1)
trailing edge line x;~1-|y| tan ¢=0 (3.2)

where the length is normalized by the wing-base chord length (OA of Figure 1).

Figure 1, Outline of Wing

4., Load Distribution Z(x,v)

The following two cases of load distribution are considered:

Lol D=1(¢—a)—1(§—-1) ‘ (4.1)
lan(x, Y =(E—-0)[1(E—b)—1(§—1)] (4.2)
where
_x—|yltang
s_—lj—‘lm— (4.3)
_4
7= (4.4)
1: =20
l(x)={ (4.5)
0: x<0

The geometrical meaning of £ is as shown in Figure 1. The equation of the
straight line which passes through the point B at a distance § from the leading
edge along the chord at the wing base and the intersection P of the leading
edge line and the trailing edge line is given by the following, letting the
sweep-back angle of BP be Ag’

z—€=|y| tan 4¢ (4.6)
Using the following equation
tan g—tan Ae="¢ (4.7)

equation (4.6) can be rewritten in the following form




~ZX—|yltang
=T (4.8)
At a point Q(x,y) on BP, the denominator at the right of the above equa-

tion is QZQt (local wing chord length) and the numerator is QZQ (the distance

from the front edge to Q), when we let the intersections of a line parallel to
the x-axis through Q with the leading-edge line and the trailing-edge line be
QZ and Qt’ respectively. (4.8) represents a trace of the point at which the

ratio QEQ/QZQt of the distance from the leading edge to that point and the local

wing chord length passing through it is constant. In the case of the outline
under consideration, consisting of straight lines both at the leading and trail-
ing edges, this trace becomes a straight line passing through the point P. This
trace is called the base line of the considered outline.

As may be observed from (4.1) and (4.2), the fact that 1(x,y) is a function
of £ alone indicates that the load distribution is constant along each base
line. Namely, every base line on the wing surface becomes an isobar. Equations
(4.1) and (4.2) are plotted in Figure 2.

1(8) L&)

0 a | 0 b 1

z(§)=l|o l(§)=lu,

Figure 2. Load Distribution

If we analyze the load distributions given by (4.1) and (4.2) as a load
distribution 7Z(x,y), all load distributions consisting of straight line seg-
ments can be represented by superimposing these two cases. For example, for
the load distribution shown in Figure 3, it becomes

B—-A

l(x, y):Alla—lep+ ﬁ—-a (lza—lzp) 1
LE) 5. Computational Method
B When the load distribution Z(xl,yl)
A is a function of El alone in (2.6), the
integration with respect to yl can be
0 o B 5

carried out irrespective of Z(El), by

converting the variable of integration
from (xl,yl) to (El,yl).

Figure 3. One Element of Tangen-

tial Load Distribution The result of the computations for
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the outline of Figure 1 is given below. When the outline is symmetrical, the
integration for the left wing (y1 < 0) in (2.6) can be easily derived from that

for the right wing (yl > 0). Hence, the computation was performed only for the

right wing. This is indicated by r.

vVt
6:(z, v, 2) = s—nfoF(“" ¥r 2 EDIEDdEy (5.1)
[t 1—ay, x—&—¥; tan dg
Fz,y, =, E‘)‘zjo T e {” VGE—z+y, tan Ae.)2+(y—yl)2+z2} ez

L 5=y " _1 LG—y)2+22] tan Ade,+xr6,(s~Y)
=1-0ay) {tan z Ftan z Ftan zV &l +(s—y)*+22

_1 (@242 tan Ag, +y(61—2) }
zv (=&)Y 422

—tan

V(z—8) +yi+2E —(z—§) }

i

+ozlog {Jxr2€l+(s_y)2+zz — 2z,

. Vv 2+ G—Y)¥+2* +ssec de,— (x—E)) sin dg;—Y cos Ae,
40z sin A¢, log { vV (x—ED 1y +2% —(x—&) sin Adg,~7 cos A¢, (5.2)

where /8
tan Ag, = tan 99—%'51 | (5.3)
Zrer=z—Ei—stan Ag, (5.4)

As for the portion ¢Z arising from the integration of the left wing, it can be
immediately obtained from ¢, using the relationship
$i(z vy D)=, (a, —Y,2) (5.5)
Finally it becomes
¢=¢,+di=9¢.(z, ¥, 2) +¢,(z, -, 2) (5.6)

The representation of (5.1) may be useful as a fundamental equation for
numerical computations when the form of Z(E;l) is complex, and the analytical

solution of the double integration in (2.6) is impossible. However, when the
load distribution Z(El) possesses a simple form such as (4.1) and (4.2), it is

easier to integrate over vy after having integrated over El in (2.6).

When z, is obtained from the given Z(El) by means of (2.7), using (2.6) as
a fundamental equation, it is sufficient to find v, in order to derive the cam-
ber distribution z.. Therefore, the computation may be simplified by carrying

out the differentiation of ¢ with respect to z in (2.7) before the integration.

6. Results of Computations

The results of the computation, which was performed to obtain the down-
ward flow v, of a thin wing having the load distributionms Zl(E) and ZZ(E) stated

in (Ref. 4) for the outline of (Ref. 3), are given below. 1In this case, (2.6)



is described as follows: ‘

L e LA 2= (6.1)
i =1—e|yDé+ 1wl tan ¢ : (6.2)

Let ¢ and v, for the given Zl(gl) by (4.1) be ¢l and v,1° respectively,
and let those for Zz(gl) given by (4.2) be ¢2 and v,

2"
6.1  La(E)=1(¢—a)—1(€:—1)
¢rl/<g> =(1-a) {1__2‘_’2 <tan"s~:—y+ tan“%—) +% log [‘(?%:'}

Vo + (s—Y)*+ 22 +ssec X— (x—a) sin X~ cos X } ’
~+sec % lo, { = A
g v (@—a)*+yt 42 = (x—a) sin X—1YcosX

B o (Yo E G R e S GO T 4w )
2 Vet o) 2420 ¥ Gyt 2 —(z—a)

L Zme—ytani { 21 LG—1)2+2%] tan X4z, (s— 1)
—— ——{tan"’ T — = T s et O

z 2V Zr2 4+ (s—Y)E + 22 ‘ (6.3)
. (PP+27) tan 1 —(z— a),y}

—t erfin T N TR
s (x—a)+y2+22

v (x=1)2+y*+2f —(z—1) sin ¢—Ycos¢

— sec ¢ log {@i(s:yj@is sec ¢—(x—1) sin ¢—7Y cos ¢ }

l

+ tan ¢ log { J._zr_lzi({:_y)zfzz —zry_ ¥V @—1)+ 97 +2 +2—1 }
2 Vot et by VoD — (oD
_Z=l-ytan¢ {tan-l [Gs—1)+=2"] tan ¢+ 21 (s—7)
2 N2+ (5—y)i+=?

~—tan"! @+29 tan ‘/,_(x_l)_?/_}
where 2V (x—1)tHyi+ 22
Irp=x—a—stan X (6.4)
Zy=x—1—stan ¢ (6.5)
tan X== tan ¢— (A/5)a (6.6)
Dm\_ N[O v+ 7y _ s~y
8"( v )‘U a){z log[ (s—y)2+z2] = A ey e }
+ sec 2 log {i.%?—}—(s%@i@j—s sec ¥—(x—a) sin X—Y cos ¥ }

v (@—a)*+y*+2? —(z—a) sin X—Y cos X 6.7)

_tan¥ {3’,;?_?5({:_}/5‘&7?;@.i,(~?:ﬂ)?+?/2+zfi¢—a }
: VI + 6=+ 242V (@—a) it yi+2E —(z—a)

5 S .

—~ GV ELF G2 Y (@—a) + 2"
(S—'y)2+22 y2+zz

- “/;%:,2 +(s—i@/3 ?Erz?i‘g/sec ¢~ (x—1) sin ¢—Y cos ¢
sec ¢ log { J (=149 +22 —(z—1) sin g—y cos ¢ }




+ y) ]

tang | {{i;;‘z’%j(s:‘_y)é47—xrl NV (=D yi4e +a-1 }

2 ¥ Vit + my)bet tan ¥ DAY+ = (1) (6.7)
G—PVEP+ =)+ | YV (@=D'+y +2
LR A7) L) e ,\
In the above v we observe that the 5th term —yv (z—a)?+y2+22 /(Y2422

zrl?

and the last term v (x—1)2+y2+22/ (¥*+2") do not contribute to v,1 from the re-

lation of (5.6).

6.2 (€)=~ —-b)~1(5—~1)] |

Let

P4

\%
61/(32) =3 A-0Kim Q=B Kt L(Ket Ko) |

1-0oy L S=Y Yy o Yitz?
K= 12 4 -1 LV = 4 T
1 po (tan = + tan - )+ 5 log { G—ira? }

Rimsec g (S CED T s 1) sing—yony)
V=1 it — (x—1) sin ¢—Yy cos ¢

_tand {i‘”zli‘*;({t?/)_z,‘*_’_zz_—fi. v (z=D!+y 42" 21 }
2 VEl+ =T 2V (a— DY R ~(a—1)

z o (@it (=) 2

Wt d ey )
o @Dy

4 E71-ytand {tan-l L= +2] tan ¢+ 21 (s—¥)

— tan

K= sec @ tan 2 log {:{;frg?f(s—y)fﬂiJrs sec 2= (z—b) sin 2—y 0_958}

- X - : .8
vV (=842 +22 —(x—b) sin 2—y cos 2 (6.8)

_ (z—ptan @) ¥ (z—p tan 9)°+ (@ —p)°+ 2%
(Y—p)+z*

Vi G—y) 2422 — (z—p tanﬁﬁg)fii(yjp)fj-zz +(s—p) sec 2

X4l . 1 YANSTE) TR
{Og Vi + (s—y)i+zt +vV (z—ptan O+ (Y—p)2+2t +(5—p) sec 2

—log

v (z=b)+ 32 +2% +v (x—ptan 9)*+ (Y—p)i+2° —psec 2

1 {(x—p tan ¢)2
2L (y—p)i+z?

'x/;(x——b)2+y2+z2 —+v (z—ptan P2+ (Y—p)*4-2% —psec 2 ]

— tan? .Q}

Vot + G+ +an  V (@—b) itz — (z—b)
_(z—b—y tan 2)*(y—p) —=2* tan L[2(z—b) — (¥ +p) tan 2]
2L (Y—p)*+27]

% {tan" [(G~1)i+2%] tan .Q+x,,,‘(s—y);_
. Va i+ G—y)i+=?

xlog{“/mm@i“m R € R e et }

et O 2D en 0oy )

v (@=b) i+t
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vz, P+ =) T +2E +ssec g—(z—1) sin ¢—y cos ¢ ’
- 1 T (S—Y) 2 +s 1
sec tan ¢ log { vV (x—1)2+y*+22 —(z—1) sin ¢—Ycos¢ }

4+ (z—ptan @) ¥ (z=—p tan ¢)°F (Y—p)*+2~.
Y-p+2

 fog BT~ o an V1 =P =) sec o
VP + (=Y 422 +V (z—p tan @)*+ (Y —p)2+22 +(s—p) sec ¢ | !
—log | Y (Z=D* 11 +2" —V (z—p tan ¢>2¢’<?/7P>,“14cz€:esséﬂa}} |
v (z=1)*+y2+22 +v (z—p tan @)2+(Y—p)2+22 —psec ¢
_Ll[(z=ptang)® ., } : 6.8
2 { W=tz Y -8
% log { Valt+ =+t —an _{Z(Eii?}‘_@ﬁ??‘j_ﬂ}
Vo G=y) e +an |V (e~ DR — (=)

+ (z—1—Y tan N)*(y—p) —2* tan ¢[2(x—1) — (Y +p) tan ¢]
[ (y—p)i+2*]
 fanes LemW T o)
an P (s—Y)i+ 2t

2 ) ey | |
2 (x—1)2+y?+22

tan

KFY LI {;/,Uc,,—“l?@?taﬁf@’?@/:yjﬁg —(z=1—Yyi tan ) }dy,
00— V(@z—=b—y, tan D2+ (Y—y )2 +22—~(x—b—7Y; tan 2)

where
Zrp=x—b—stan 2

tan 2==tan ¢— (1/5)b
Since the integration of K4 could be represented by elementary functions,
it was numerically integrated in the actual computation.

zr ]-
87:(%):?(1—17)2&— A=0a+-E (Tt Tt 5

o Y2422 7 5=y |
Ji=—1 { }_ Y _ !
1 2 og (S—y)2+22 y2+22 (A 1) (s_y)z zz

s plog {5 G 3y o) sing=rcony )
v (x—1)2+y* 42" —(z—1) sin ¢—Ycos¢

_fand e {,‘f@?ﬂ‘,(é;—__y)z_ii:&. v (z— 132+v?{2+32,,+x:1_}
Va P+ (=Y 42t +zm ¥ (2—1)2+Yi+2% —(z—1)

5 M ANLET TS T

_G=W VTP -1 2P _ YV DIy
(s—y)2+22 y2+z2 ‘ (6-9)

Js=sec 2 tan 2 log {‘/x”’z'i,'(sf Y2 +2" +ssec @—(z—b) tan £ —y cos ‘Q}
vV (=) +yi+22 —(z—b) sin 2~ cos 2

[y—p)r+="]2 v (z—ptan @)+ (y—p)i+2?
,/iﬁz_i_(s__y)z_,_zz —«/7(5:3 tan 9)*+ (Y —p)*+2* +(s—p) sec 2
VIt +(s—y)i+2? +V (z—p tan )+ Y —p)*+22 +(s—p) sec 2
v (z=b)’+y*+2* —v (z—p tan ¢)*+(y—p)*+2* —psec 2 l}

—log |V (x=b)"+Y* 2 ang) ry—=po)
W (x—b)*+ Y2 +2% +vV (x—p tan @) ?+(Y—p)?+2% +p sec 2

_(a—p tan @){(y—p)*[(z—p tan ¢)*+ (¥ —p)?] +22[ (Y — )’ — (x—p tan ¢)*]}

X {log

10
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2

41 { (z—p tan @) (y—p)2—27]

2 [(y—p)2+2%]?

xlog{*/xrbz*‘,(s:?/,)“_z?—xra N @Dy 2 a—b }
Vo +GoDHT +a ¥ =0 Ty F 27 — (2—5)

+ 2z(z—p tan @)*(Y—p)

— tan? .Q}

[(y—p)t+22]? ‘
[ [G=1*+2%] tan 8+ zu(s— 1Y) (Y2 +2% tan 2—(x— b)Yy
1 LW T SR T In\STY) L x
X itan WL+ =Y+ tan 2 (x—b)2+yi+22 }

__ (z=b—ytan (=P =) +[(p—Y) tan 2— x5 ]22
L=+ ][ (o—y)?+27]
+ (x=b—y tan D) (Y—p)y+[(p—¥) tan 2~ (z—b)]2*
@+ [(p—y)2+2%]
22(x—p tan ¢) 1 1
+v (y_p)2+zz { }
_ Ve f+ =1 +2% +ssec ¢—(x—1) sin ¢—Y cos ¢
sec ¢ tan ¢’ log { vV (z—1)+yt+2t —(z—1) sing—Ycos ¢ }
4 (& tan {(Y—0)*[(z—p tan 9)*+ (¥~ )] +2*[(Y—p)*— (z—p tan ¢)*]}
[W—p) 4221 (z—p tan @)2+(Y—p)i+2?
‘/ﬁrzir(s_—*y)iffz_“\/ (z—p tan @)+ (Y—p)?+2% +(s—p) sec ¢
‘\/xr12+(5_7/)2+22 ++ (z—ptan ¢)2+(y—p)2+z2‘+(s-—p) sec ¢

Yzt +(—y)*+2*

vV (=8 +yt+2*

X {log |

- (6.9)

—log | V (z=1)' 142" =V (z—p t«'zr.zs€>it(?/rﬂ>i+£?:ﬂ,§%9j’_l}
vV (z=1)"+y2+2% +V (z—p tan ¢)2+ (Y—p)i+2% —psec ¢
_{_{ (z—ptan @) [ (Y—p)*—2*] _
2 (y—p)*+2")?

tan? ¢l}

x log {ﬁ?gzi@:y)itzz —zn vV (z=D*+yP+27 +2-1 }
Ve i+ =2+t +xa vV (=1 Y42 —(z—1)
_ 22(y—p)(z—p tan ¢)*
[y—p)2+242

% {tan_, [G—)*+2*] tan g+ (s—Y)

== tan

NSy -1(yfif?),fan,,¢’f,(x—1)y}
N2+ (5—Y)% 42

oV (@=Lt

+ (z—1—y tan ) (=Y =Y +[(p—1) tan $—x,,]2*
[G—1+22 ][~y +22]
_ (z—1-ytan Ny (y¥—p) +[(p—7) tan ¢—(x—1)]=*
@+ [(p-1)*+2%]
__ 2(z—ptan @) { 1 _ 1 }
@W—p)+2t |\ Vo P+ G-+ ¥ (z—1)2 4y 422

_ 2
= (z—ptangde®

(=2 +2 (z—p tan 9)P+(o— 1)+ 22

V. 4+ (s—y)i+2?

VG

x {1og VZni+ =y 42" —J (z—p tan 9)*+ (p—1)*+ 2" +(s—p) sec &
Vi (s—y)2+22 +vV (x—p tan 9)2 4 (p—1y) 2422 + (s—p) sec &

v =0+ Y242 —V (z—ptan 9)’+ (p—y)*+2% —psec 2 H

-1 i a0 N AN A N
i v (@=b)2+y2+2* +V (z—ptan @)+ (p—y)*+2* —psec 2
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P A {“/xrb FG—’++an vV @b+t —(x—b)}
2[ (=) +2) Vo =yt~ V¢ (z—b) +y2+22 +2—b

I e =

(p—y)*+2* 2zt +(s— )P +22

o (Y427 tan 8—(z—-b)y }
2 (z—b) Y4zt

+

— tan
(z—ptan ©)2%
TP+ (a—ptan @)+ (o= 1)+

% {log Wan+(s—1)*+2" —v (z—p tan 9)*+(p—1)*+2°+ (s—p) sec ¢
Waxn?+(s—1)*+2% +vV (x—p tan 9)*+(o—y)*+2*+(s—p) sec ¢

|V @EEDF Y82t =V (z—ptan )2+ (p—Y) +2* —psec ¢ ‘}
|V (z=1)Fy*+2* +V (z—p tan )+ (p— —) 2% —psec
2 log {«/xrw+z +zn VY H(f;}@— (z—1)
T 2[(o—y)*+=2] Vi =yttt —xn "7 (x—=1)*+y2+2% +x—1
__2y—p) {tan-liii—y)zicz”] tan ¢+zn (s—7)
(o= +22 2z 24 (s—p) 2t

_, (P42 tanp— (x—l)y}
w (=1)2+ye42t

—log |

— tan

Js_g 1 {~/(x~1 —y tan )2+ (Y=Y +2* —(z—1— yltan¢)} "
0= V(z=b—y; tan D2+ Y=y +22—(z—b—Y; tan 2)

The velocity disturbance v, in the z-direction is given as above. Then
the camber distribution z, is computed from (2.7) using it. It is sufficient
to know v, alone in order to obtain the camber distribution z,- However, it

becomes necessary to know the disturbance velocities Vo and vy in the x- and

y-directions when details of the flow field are desired, and they are obtained
by differentiating the disturbance potential ¢ in each direction. These compu-
tational results are given in the appendix.

7. Shape of the Camber

The fundamental equation (2.1) is the representation of the case when the
considered wing surface is assumed to lie in the plane z = 0. Accordingly, z.

is computed after having obtained v, at z = 0 in (2.7), and this is the stand-
point of the ordinary linear theory.

However, z = 0 becomes a singularity of v, at the center y = 0 and tip y =
= g of the wing, as observed from the expression of v, in {61, so that z,

cannot be computed. 1In order to avoid this, Weber obtained v, at z = zt, taking

into account the thickness z, of the wing, and then computed z, (Ref. 4).

Following Weber's procedure, we computed zy from the descending flow v, at
Z=Zt.
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z(x, Y) =5:v—-———’(x'g' #) —dz ‘ (7.1)

In the numerical example [9] presented below, we used NACA 64A 010 as zZ.s modi-

fying it (Ref. 6) according to Kiichemann's method (Ref. 3). [14

This z, is separated into the local elevation angle a(y) and the ordinary
camber distribution z,, 3s follows

-1 zc(xh y)

Li— (7.2)
2Zem(2, Y) =2.(x, ¥) +(x—x) tan a

a(y)=—tan

(7.3)

r—Z
=zc(l', ?/) - TZ‘;—.ZI"ZC(x" y)

Examples of computation of a(y) and zcm(x,y) are presented in [9].

8. Vertical Distribution of Mach Numbers

As stated in [1], the greatest effect of the sweep-back angle is the reduc-
tion in the normal component of Mach numbers Mh at the isobars. Therefore, it

is interesting to know how Mn is distributed on the wing surface which possesses
the camber distribution computed by the preceding method (Ref. 5).
Assume that the wing surface is at z = 0 and draw an isobar line omn it,

Let the angle between the isobar and the y-axis (the direction normal to the
main stream on the wing surface) at a point P be A, then the velocity Vn which is

normal to the isobar at that point is given by the following equation

Vai={(V +v,) cos A~v, sin A}2+v,? (8.1)
Using this, we can obtain a representation of Mn within the approximation of
the linear theory.
(32) =(32) o 4= (3 )(5) sm2a (8.2)

where

M: Mach number at point P;
M : Mach number of uniform flow;

: Sonic speed at the point P;
a : Sonic speed of uniform flow.

Namely, Mh can ‘be obtained provided Vy/V and A are known.

In the subsequent section, an example of Mn distribution is presented to-

gether with Z .-
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9. Numerical Example

Examples of numerical computation using the method stated in the previous

sections are presented.

Since the equations are for incompressible gas, the

case of compressible gas is to be reduced to the incompressible case by means

of the appropriate conversion.

Physical quantities in compressible flows

We used Prandtl-Glauert's law for this purpose. /15

are indicated below by a suffix

c.
Mach number M, = 0.8
Wing outline
Half wing-span s. = 3.6
Taper ratio 1-2x=0.5
Sweep-back angle of the ¢ = 30°
leading edge ¢
Aspect ratio Rel = 9/6

According to Prandtl-Glauret's law, the aspect ratio in the corresponding
incompressible flow is 5.8.

Load Distribution

As a load distribution, the following two cases are considered:

(1)
(ii)

where

Both (i) and (ii) correspond to the lift coefficient C

1(6)=0.3%x1(§,0)

L& a=1¢-a)—-1¢-D
LEH=E-n1E-b)-1¢E-D]

L= 0.3.

Figure 4 shows a comparison of the spanwise distribution of the local ele-

vation angle for the case of a semi-infinite-span wing (Ref. 6).

In the neigh-

borhood of the wing base, the elevation angle becomes larger than that of the

semi-infinite-span wing.

Figure 5 gives a comparison of z

direction.

Figure 6 (a) - (c¢) gives comparisons of z

nite-span wing.
spicuous

Figure 7 gives a variation of Z.n

14

The variation of 2z
cm

o at various points in the span-wise

with respect to y is not monotonic.

with the case of a semi-infi-

The difference from the semi-infinite-span wing becomes con-
" close to the wing base.

with s, and Figure 8 gives a variation
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Figure 5. Variation of . with y

with A. Both variations are small, indicating that the effect of the aspect

ratio is not remarkable,

On the other hand, the effect of the sweep-back angle is remarkable, as

observed from Figure 9.

Figure 10 demonstrates the manner in which the shape of the load
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Figure 6 (b). Comparison of Z.n

distribution affects Z.m' The maximum height is increased as the load distri-

bution falls off towards the right.

Finally, Figure 11 is the vertical distribution of Mach numbers Mn for
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the case of s, = 2.2, » =0.75 ( R. = 7) when the load distribution is 1(§) =
= 0.4 x Zl(g, 0) - 0.8 x Zz(g, 0.5). The local Mach number M in the figure

corresponds to the pressure coefficient cp = 1/2+1(8). As is clearly observed

from the figure, the critical state is not reached yet as far as Mn is concerned
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Figure 9. Variation of 2. with Sweep-Back Angle.
when it becomes larger than 1. However, one has to be careful since the effect
of wing thickness was not taken into account.

This Mn can be further reduced by taking into account the span-wise shape

of the load distribution appropriately for the case of the same lift coefficient
C..
L
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10.

(1) The camber of a straight line taper wing having a span-wise uniform

04

05 06

0.7

Conclusions

08

0.3

§

load distribution is obtained by means of the linear theory.

(2) The camber can be computed by deriving the velocity disturbance
the z-direction. In addition, equations of the disturbance potential and the

velocity disturbances in the x- and y-directions are derived.

(3) The details of the flow field are found from the disturbance velocity.

1.0

in

As an example, an equation giving the Mach number component normal to the iso-

bars is derived.

(4) According to numerical computations, the camber variation is remark-
able at the base and tip of the wing, but it is close to the shape of the two-

dimensional case at the center.

121

(5) According to the numerical example of the Mach number component normal

to the isobars, the reaching of the critical state in the flow field on the
wing surface may be delayed by determining the camber so as to bring about a

span-wise uniform distribution.

(6) The shape of the span-wise load distribution is arbitrary in princi-
ple. By an appropriate selection of this shape, an optimal shape of camber for

the Mach number component normal to the isobars may be designed.
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APPENDIX v_ and v
X Yy

A- 1 lla(&)=1(&—a)—1(§1—1)

1 (¥ 42) tan 2= (z—a)y
2w (x—a)i+yt+2?

(P +2)nd— (z-Dy |
oV @Dy |

—_—)2 o2 . -
r( %)= ann [T i L mnCem)_

1% V2 (s—Y)2 422
A.1.1
— -t LGP 2] tan g4z (=) ( :
2V xn®+ (s—Y)P+2?

21!—1 — —_— z (Z—l)z -ls_.y _ y
87T< 14 )_(1 a){y2+z2+ (s—7y)t+z? —a(tan —z“-i-tan 1;)}

L LG= 2] tan A+ 2. (s—Y)
- (LT L N AT TS TY)
tan X{tan JOV Gy tan
- [G=Y)?+2%] tan dtan(s—y)
Wz + (=) +2?

tan

1 P +2D) tan X — (z—a)y
G AL

-1 (P+2H) tan ¢—(x—1)y}
2V (z—1)2+yi+=t ‘

+ tan ¢ {tan tan

and
V1=V, Y, 2)+vm(z, -, 2) (A. 1. 3)
V=041 (L, Y, 2) =y (x, —Y, 2) ; (A.1.4)

A.2 lzb(51)=(51—b)[1(51_b)"1(51"1)] 222

877:(@) = P‘/ (z—p tan @)+ (p—7)°+=* . ‘
4 (p—y)*+22

x {log |V (=Y 2" =V (z—p tan @) +(p—1)*+3* +sec J(s—p)
Vi +(s—y)?+2? +v (z—ptan @)+ (p— 1) +2? +sec ¢(s—p)

S E= 1Pyt a? —y (2=p tan ¢)*+(p—1) " +2 ~psec ¢ i

—log | S~/ T UM S
V(@D Y 2+ (z=p tan 9)*+ (p—y) +2% —psec

— log [ Y EG=Y)*F2" v (z—p tan )"+ (p—y)*+ 2 +sec L(s—p)

Vo F (=YY aE +V (2= p tan 9+ (p—y)"+=" +sec 2(s—p) |

+log |-V (EZBHUH2T — (a—pian )"+ (o=9)*+2" —psec O ’}
v (z=b) i +yi+=2% +v (z—p tan ¢)2+ (p—Y)*+2% —psec £

ML (1 [T e (GO e ]y g

2L (o~ y)*+7"] SR Cr) L S Gy ey gy 3\

~log [1,/ Zri+ (P42t —zn Y (=D 1y +2? _—,,(ﬂ}f:i)]}
Vet + 6=+ +zn Y (=124t +e? +a—1

+ plp—1) (x—~b—vy tan ) +=* tan 2]
(=42t

1 LG=9?+2] tan @+ 2,(s—Y)
x4+ (=) i+ 2t

_ PLo—y) (x—1~y tan ¢) +22 tan ¢]
(P—y)*+2*

tan

X {tan -1 (#+22) tan Q—(x——b)y}~

2 (=)t Fyt422
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X{ L=+t tan gtz —1) -liyin%g?),ﬁaaﬂf{zc_i)?!}
2zt (=Yt M N (a=1) 42

—(l—a) {t -1 [(S“y)2+22] tan (p+x”(s y) —t —lgyztgﬁ)tﬁl ¢—(x—1)y

: 24/.1»12+(s — )42 e (z—1)e4yi422
Vyra A-D= STy Y
8n< % > —(1-b)? {y 12 +_‘——*(s—y)2+z2 —o'(tan 1 _z_+tan 1;>}

R L oS A Co N Ve
2 G—g)t+z? V2

gl Vi (s—)*+22 _ ¥ (=D yi+z?
+<1 a+zsm¢> { feey r e ___y@—}

plo—y) (z—p tan ¢)z {p(x—p tan¢) tan g 1}
il (p—)2+2*]V (z—p tan @)2+(p—7)?+2? (o—)*+22

X {log

_1og] Y (=0 +y 452 =V (z—pran @) + (p—y)F=F —psec 2 |

|V (a=b)+ 42 +v (z— p tan @)+ (p—y)* 2% —psec £ |

VIt +(s—Y)*+22 —v (z—p tan 9)*+ (P—y)*+2* +sec 2(s—p)
Vi (s—y)? 22+ (z—p tan @)%+ (p—Y)i+2? +sec L(s—p)

—log x/xrx FG=y)iFt -V (x—ptant;’)2+(p Ay)2+z + sec (p(s-—-p) [
VI (s— y) Yz (z—p tan ©)2+ (p—y)2+2% + sec go(shp) [

+log N @=D R =Y (z—p tan 9)°+ (p—Y)*+2% —p sec ¢ i}
|V (=12t 2%+ (z—p tan @)2+(p—Y)*+2% —psec ¢
4 ele—P= {(x—ﬂtan ¢)? __}
2L~y +22] L (p—y)*+2*
x {log[Jx»’Hs_—_y)%z_’—xro V=07 +y" ¥z +2—b ]
Vi + (=) 42 +zn */(x—b)2+'y2+zz —(z—b)

—log[ Va i+ (=2 +2 —zn | ¥ (=14 +2F +2—1 ]}
NZSCRR oy e RSV gy e +y2+22 —~(z—1)

, P { (p—y)*—2*
T 2[(p~y)+22] | (p—y)*+2?

- L=y +27] tan £ +z0(s—Y) -1 (¥+2%) tan @— (z—b)y
1 Lt i — 1 il
8 {tan EAC ==

N xi+(s—Y)P+22
oot L=y +2"] tan ¢tz s— Wy tan-t (¥*+2%) tan ¢~ (.r—l)y}

(x—ptan go)z—zz}

z“/xﬂz+ (5 y)2+z

=/ (z—1)2+y*+22
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- [G=1)*+2%] tan P+ 21 (s—Y)

|

o Lo — tap-r Y212 tan g — (z—~1)y
2T+ (s—y) +z2 2V (z—1)*+y2+=*
P e L LG—y)*+2*] tan 2420 (s—¥) -1 (P +2%) tan @—(2—b)y
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Similarly to (A.1.3) and (A.1.4):

Vre=Vrr2(, Y 2) +'Uzr2(-zr -~Y, z)i

'Uyz=vyr2(xr Y, 2) —'Uvﬂ(x' - 2) ’

22

}
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(A.2.3)
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